

Arno J. Hinrichsen GmbH & Co.KG

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

Eignungsnachweis Nr. 6108/2/23

vom 22.08.2023/Lo/gie

Auftraggeber:

Otto Dörner

Entsorgung GmbH Lederstraße 24 22525 Hamburg

Auftragssache:

Eignungsnachweis nach Ersatzbaustoffverordnung

Recycling-Baustoff (RC)

Probenbezeichnung:

RC-LITH MIX 0/32 mm B2 als RC-1

Probenmenge:

ca. 20 kg

Probenahme:

am 05.07.2023 durch Herrn Rehm, asphalt-labor

Entnahmestelle:

Halde

Herkunft:

Kiel, Ottostraße

Anforderungen:

ErsatzbaustoffV vom 09.07.2021

Seite 2 zum Eignungsnachweis Nr. 6108/2/23 vom 22.08.2023

asphalt-labo

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

1. Veranlassung und Zweck

Ab dem 01.08.2023 gilt die am 16.07.2021 veröffentlichte Verordnung über die Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung ErsatzbaustoffV).

Danach sind alle in dieser Verordnung geregelten mineralischen Ersatzbaustoffe im Rahmen eines Eignungsnachweises einer Einbauklasse zuzuordnen und einer Fremdüberwachung zu unterziehen.

Die Otto Dörner Entsorgung GmbH, Hamburg, Werk Kiel, Ottostraße, beauftragte daher die asphalt-labor GmbH & Co. KG, Wahlstedt, an dem mineralischen Ersatzbaustoff (RC-Baustoff)

- RC-LITH MIX 0/32 mm B2 als RC-1 -

einen Eignungsnachweis durchzuführen und dieses Material in die Fremdüberwachung aufzunehmen.

2. Probenahme

Die Probenahme erfolgte am 05.07.2023, das Probenahmeprotokoll ist in der Anlage 1 enthalten.

3. Prüfungen und Prüfergebnisse

Die Proben wurden der Untersuchungsstelle

Analytik Labor Schirmacher GmbH Zitadellenstraße 10 21079 Hamburg

für die Durchführung der chemischen Analysen überstellt.

Die vollständigen Prüfergebnisse sind in der Anlage 2 enthalten. In den nachfolgenden Tabellen werden die relevanten Prüfergebnisse zusammengestellt und den Anforderungswerten gegenübergestellt.

Miglied im Bundesverband unabhängiger Institute für bautechnische Prüfungen e. V.

Seite 3 zum Eignungsnachweis Nr. 6108/2/23 vom 22.08.2023

Arno J. Hinrichsen GmbH & Co.KG

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

Materialwerte nach ErsatzbaustoffV, Anlage 1, Tabelle 1						
Parameter	Dim.					
r arameter	Dilli.	Prüfergebnis	RC-1	RC-2	RC-3	Einstufung
pH-Wert	-	9,05 - 9,27	6-13	6-13	6-13	RC-1
Elektrische Leitfähigkeit	μS/cm	947,33	2.500	3.200	10.000	RC-1
Sulfat	mg/l	353,31	600	1000	3.500	RC-1
PAK ₁₅	µg/l	0,15	4,0	8,0	25	RC-1
PAK ₁₆	mg/kg	2,06	10	15	20	RC-1
Chrom, ges.	µg/l	46,16	150	440	900	RC-1
Kupfer	μg/l	19,53	110	250	500	RC-1
Vanadium	μg/l	78,89	120	700	1350	RC-1

Überwachungswerte (Feststoffwerte) bei RC-Baustoffen nach ErsatzbaustoffV, Anlage 4, Tabelle 2.2						
Parameter	Dim.	Prüfergebnis	Anforderung	Einstufung		
Arsen	mg/kg	3,84	40	erfüllt		
Blei	mg/kg	12,7	140	erfüllt		
Chrom	mg/kg	21,1	120	erfüllt		
Cadmium	mg/kg	< 0,1	2	erfüllt		
Kupfer	mg/kg	16,5	80	erfüllt		
Quecksilber	mg/kg	< 0,1	0,6	erfüllt		
Nickel	mg/kg	13,1	100	erfüllt		
Thallium	mg/kg	< 0,4	2	erfüllt		
Zink	mg/kg	83,8	300	erfüllt		
Kohlenwasserstoffe C ₁₀ bis C ₂₂	mg/kg	< 50	300	erfüllt		
Kohlenwasserstoffe C ₁₀ bis C ₄₀	mg/kg	< 100	600	erfüllt		
PCB ₆ und PCB-118	mg/kg	< 0,02	0,15	erfüllt		

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

4. Betriebsbeurteilung und WPK

(Auszug aus Prüfbericht Nr. 6107/1/23 vom 19.07.2023)

Prüfgegenstand	Beurteilung
Betriebsorganisation Anlagenkomponenten Personelle Ausstattung WPK-Handbuch WPK-Beauftragter WPK-Durchführung	geeignet geeignet geeignet ordnungsgemäß Herr Sven Johannson entfällt

5. Beurteilung

Die geprüfte Probe des mineralischen Ersatzbaustoffes

- RC-LITH MIX 0/32 mm B2 als RC-1 -

entspricht hinsichtlich der geprüften Parameter den Anforderungen der ErsatzbaustoffV und kann der Einbauklasse

RC-1 -

zugeordnet werden.

Der Eignungsnachweis gilt damit als bestanden.

asphalt-labor

Arno J. Hinrichsen GmbH & Co. KG

Dipl.-Ing. Steiniger Prüfstellenleitung

Dipl.-Ing. Lobach Sachbearbeiter

OUP Mitglied unabhā

l im Bundesverband ngiger Institute für hnische Prüfungen e.V.

asphalt-labor

Arno J. Hinrichsen GmbH & Co. KG

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau

Qualitätsmanagement-Formblatt

Probenahmeprotokoll ErsatzbaustoffV in Verbindung mit PN 98 Kapitel:

QMF 7.3-5

Ausgabe:

01 Datum:

04.10.2022

Seite:

1 von 1

1. Allgemeine A	ngaben							
Firma/Auftraggeb	er	(Ho Dorw	V				
Aufbereitungsanla	age:	Uiel	liel, Ottoskafe					
Ersatzbaustoff:		Misch	Miss-RC / RC-Lill MIN 32 als RC1					
Charakterisierende Prüfkörnung					/ & Nein			
Überwachungszeitraum:		Eigu	nugs wache	(ش				
2. Angaben zum	Ersatzbaustoff	0	J	V 11				
				.5.				
Hergestellte Lieferkörnungen	Produzierte N Überwachungs		Anteil der Ma		Vorratsn	nenge	Art der Lagerung	
1. 0/32	_		-		ca - 30	kn3	Helde	
2.								
3.								
4.								
5.								
6.								
Summe								
3. Angaben zur P	robenahme							
Anzahl der Einzelp	roben:	zu 1)	16	zu 2)		zu 3)		
		zu 4)		zu 5)		zu 6)		
Probeteilung:		Riffelt	eiler O					
Probenahmegerät:		Schaufel Radlade						
Probenahmegefäß	:	PE- B	PE- Beutel O					
Witterung/ Äußere	Einflüsse	Kode	Swall a	a. 70°	(
4. Charakterisiere	nde Prüfkörnung	0/22 mm						
Massenanteile	e der Lieferkörnung	gen am Ge	misch für 0/2	2 = 40 x	Anteil der	Masse	/100 [kg]	
	ı 2) zu :		zu 4)		u 5)		u 6)	
Anteil < 22,4 mm [N	/l%]			Ant	eil < 4 mm	n [M%]		
5. Rückstellprober	n							
zu 1) 🕰 🔼 kg zu	2) kg zu 3	3) ka	zu 4)	kg z	u 5)	kg zı	u 6) kg	
0/22 mm kg		Lageror	t: Web, U	iel Ott	tostreph			
hiel 05.09.	23	C.	RL	-		1	1. les	
Ort, Datum		Prob	enehmer			Auft	raggeber	

Otto Dörner Entsorgung GmbH Frau Beate Weiß Lederstr. 24 22525 Hamburg

Hamburg, den 07.08.2023

Prüfbericht zu Probe-Nr.: P2023004655

Prüfbericht - Nr.:

PB2023006099

Bezeichnung:

6108/2, Misch-RC (RC1), Lieferkörnung 0/32, ausführl.

Säulenversuch bis Wasser/Feststoff-Verhältnis 0,3

Probenahme am:

05.07.2023

Probenahme:

asphalt-labor

Probeneingang im Labor:

10.07.2023

Bearbeitungszeitraum:

10.07.2023 bis 07.08.2023

Die Analysenergebnisse beziehen sich nur auf das vorliegende Probenmaterial.

Der Prüfbericht darf ohne schriftliche Genehmigung des Prüflaboratoriums nicht auszugsweise vervielfältigt werden. Der Prüfbericht besteht aus 2 Seiten.

Die Prüfberichte werden, wenn nicht anders vereinbart, 5 Jahre in unserem Hause archiviert.

Prüfbericht Seite 2 von 2 zu Probe-Nr.: P2023004655

Prüfbericht - Nr.: PB2023006099

<u>Feststoffgehalte</u>

Parameter	Einheit	Messwert	Verfahren
Trockenrückstand	%	89,3	DIN EN 14346 2007-03
Anteil Probe > 32mm	%	4	DIN 19528 2009-01, DIN 19529:2015- 12

Eluat gem. DIN 19528 2009-01 mit deionisiertem Wasser

Parameter	Einheit	Messwert	Verfahren
pH- Wert		9,05	DIN EN ISO 10523 (C5) 2012-04
Elektr. Leitfähigkeit	μS/cm	2.960,00	DIN EN 27888 (C8) 1993-11
Chlorid	mg/l	174	DIN EN ISO 10304-1 (D20) 2009-07
Sulfat	mg/l	1.040	DIN EN ISO 10304-1 (D20) 2009-07
DOC	mg/l	44,0	DIN EN 1484 (H3) 2019-04
Summe PAK15	µg/l	0,220	DIN 38407-39 (F39) 2011-09
KW-Index (C10-C40)	µg/l	842	DIN EN ISO 9377-2 (H53) 2001-07
Phenole	μg/l	<12	DIN 38407-27 (F27) 2012-10
Antimon	μg/l	< 1	DIN EN ISO 17294-2 (E29) 2017-01
Arsen	μg/l	16,6	DIN EN ISO 17294-2 (E29) 2017-01
Blei	μg/l	<1	DIN EN ISO 17294-2 (E29) 2017-01
Cadmium	μg/l	< 0,1	DIN EN ISO 17294-2 (E29) 2017-01
Chrom, gesamt	μg/l	197	DIN EN ISO 17294-2 (E29) 2017-01
Kupfer	μg/l	66,1	DIN EN ISO 17294-2 (E29) 2017-01
Molybdän	µg/l	45,332	DIN EN ISO 17294-2 (E29) 2017-01
Nickel	µg/l	22,6	DIN EN ISO 17294-2 (E29) 2017-01
Vanadium .	μg/l	94,3	DIN EN ISO 17294-2 (E29) 2017-01
Zink	μg/l	35,3	DIN EN ISO 17294-2 (E29) 2017-01

Otto Dörner Entsorgung GmbH Frau Beate Weiß Lederstr. 24 22525 Hamburg

Hamburg, den 07.08.2023

Prüfbericht zu Probe-Nr.: P2023004656

Prüfbericht - Nr.:

PB2023006100

Bezeichnung:

6108/2, Misch-RC (RC1), Lieferkörnung 0/32, ausführl.

Säulenversuch bis Wasser/Feststoff-Verhältnis 1,0

Probenahme am:

05.07.2023

Probenahme:

asphalt-labor

Probeneingang im Labor:

10.07.2023

Bearbeitungszeitraum:

10.07.2023 bis 07.08.2023

Die Analysenergebnisse beziehen sich nur auf das vorliegende Probenmaterial.

Der Prüfbericht darf ohne schriftliche Genehmigung des Prüflaboratoriums nicht auszugsweise vervielfältigt werden. Der Prüfbericht besteht aus 2 Seiten.

Die Prüfberichte werden, wenn nicht anders vereinbart, 5 Jahre in unserem Hause archiviert.

Prüfbericht Seite 2 von 2 zu Probe-Nr.: P2023004656

Prüfbericht - Nr.: PB2023006100

Feststoffgehalte

Parameter	Einheit	Messwert	Verfahren
Trockenrückstand	%	89,3 -	DIN EN 14346 2007-03
Anteil Probe > 32mm	%	4	DIN 19528 2009-01, DIN 19529:2015- 12

Eluat gem. DIN 19528 2009-01 mit deionisiertem Wasser

Parameter	Einheit	Messwert	Verfahren
pH- Wert		9,27	DIN EN ISO 10523 (C5) 2012-04
Elektr. Leitfähigkeit	μS/cm	1.033,00	DIN EN 27888 (C8) 1993-11
Chlorid	mg/l	15,2	DIN EN ISO 10304-1 (D20) 2009-07
Sulfat	mg/l	435	DIN EN ISO 10304-1 (D20) 2009-07
DOC	mg/l	11,0	DIN EN 1484 (H3) 2019-04
Summe PAK15	µg/l	< 0,2	DIN 38407-39 (F39) 2011-09
KW-Index (C10-C40)	µg/l	599	DIN EN ISO 9377-2 (H53) 2001-07
Phenole	µg/l	<12	DIN 38407-27 (F27) 2012-10
Antimon	µg/l	< 1	DIN EN ISO 17294-2 (E29) 2017-01
Arsen	µg/l	6,34	DIN EN ISO 17294-2 (E29) 2017-01
Blei	.µg/l	<1	DIN EN ISO 17294-2 (E29) 2017-01
Cadmium	µg/l	< 0,1	DIN EN ISO 17294-2 (E29) 2017-01
Chrom, gesamt	µg/l	29,9	DIN EN ISO 17294-2 (E29) 2017-01
Kupfer ·	µg/l	18,7	DIN EN ISO 17294-2 (E29) 2017-01
Molybdän	µg/l	6,061	DIN EN ISO 17294-2 (E29) 2017-01
Nickel	µg/l	3,88	DIN EN ISO 17294-2 (E29) 2017-01
Vanadium	µg/l	114	DIN EN ISO 17294-2 (E29) 2017-01
Zink	µg/l	12,4	DIN EN ISO 17294-2 (E29) 2017-01

Otto Dörner Entsorgung GmbH Frau Beate Weiß Lederstr. 24 22525 Hamburg

Hamburg, den 07.08.2023

Prüfbericht zu Probe-Nr.: P2023004657

Prüfbericht - Nr.:

PB2023006101

Bezeichnung:

6108/2, Misch-RC (RC1), Lieferkörnung 0/32, ausführl.

Säulenversuch bis Wasser/Feststoff-Verhältnis 2,0

Probenahme am:

05.07.2023

Probenahme:

asphalt-labor

Probeneingang im Labor:

10.07.2023

Bearbeitungszeitraum:

10.07.2023 bis 07.08.2023

Die Analysenergebnisse beziehen sich nur auf das vorliegende Probenmaterial.

Der Prüfbericht darf ohne schriftliche Genehmigung des Prüflaboratoriums nicht auszugsweise vervielfältigt werden. Der Prüfbericht besteht aus 2 Seiten.

Die Prüfberichte werden, wenn nicht anders vereinbart, 5 Jahre in unserem Hause archiviert.

Prüfbericht Seite 2 von 2 zu Probe-Nr.: P2023004657

Prüfbericht - Nr.: PB2023006101

<u>Feststoffgehalte</u>

Parameter	Einheit	Messwert	Verfahren
Trockenrückstand	%	89,3	DIN EN 14346 2007-03
Anteil Probe > 32mm	%	4	DIN 19528 2009-01, DIN 19529:2015- 12

Eluat gem. DIN 19528 2009-01 mit deionisiertem Wasser

Parameter	Einheit	Messwert	Verfahren
pH- Wert		9,12	DIN EN ISO 10523 (C5) 2012-04
Elektr. Leitfähigkeit	µS/cm	545,00	DIN EN 27888 (C8) 1993-11
Chlorid	mg/l	5,46	DIN EN ISO 10304-1 (D20) 2009-07
Sulfat	mg/l	200	DIN EN ISO 10304-1 (D20) 2009-07
DOC	mg/l	7,9	DIN EN 1484 (H3) 2019-04
Summe PAK15	μg/l	< 0,2	DIN 38407-39 (F39) 2011-09
KW-Index (C10-C40)	µg/l	668	DIN EN ISO 9377-2 (H53) 2001-07
Phenole	µg/l	<12	DIN 38407-27 (F27) 2012-10
Antimon	µg/l	< 1	DIN EN ISO 17294-2 (E29) 2017-01
Arsen	μg/l	4,16	DIN EN ISO 17294-2 (E29) 2017-01
Blei	µg/l	< 1	DIN EN ISO 17294-2 (E29) 2017-01
Cadmium	μg/l	< 0,1	DIN EN ISO 17294-2 (E29) 2017-01
Chrom, gesamt	µg/l	14,1	DIN EN ISO 17294-2 (E29) 2017-01
Kupfer	μg/l	10,5	DIN EN ISO 17294-2 (E29) 2017-01
Molybdän	µg/l	2,600	DIN EN ISO 17294-2 (E29) 2017-01
Nickel	· µg/l	1,41	DIN EN ISO 17294-2 (E29) 2017-01
Vanadium	µg/l	104	DIN EN ISO 17294-2 (E29) 2017-01
Zink	µg/l	6,87	DIN EN ISO 17294-2 (E29) 2017-01

Otto Dörner Entsorgung GmbH Frau Beate Weiß Lederstr. 24 22525 Hamburg

Hamburg, den 07.08.2023

Prüfbericht zu Probe-Nr.: P2023004658

Prüfbericht - Nr.:

PB2023006102

Bezeichnung:

6108/2, Misch-RC (RC1), Lieferkörnung 0/32, ausführl.

Säulenversuch bis Wasser/Feststoff-Verhältnis 4,0

Probenahme am:

05.07.2023

Probenahme:

asphalt-labor

Probeneingang im Labor:

10.07.2023

Bearbeitungszeitraum:

10.07.2023 bis 07.08.2023

Die Analysenergebnisse beziehen sich nur auf das vorliegende Probenmaterial.

Der Prüfbericht darf ohne schriftliche Genehmigung des Prüflaboratoriums nicht auszugsweise vervielfältigt werden.

Der Prüfbericht besteht aus 2 Seiten.

Die Prüfberichte werden, wenn nicht anders vereinbart, 5 Jahre in unserem Hause archiviert.

Prüfbericht Seite 2 von 2 zu Probe-Nr.: P2023004658

Prüfbericht - Nr.: PB2023006102

<u>Feststoffgehalte</u>

Parameter	Einheit	Messwert	Verfahren
Trockenrückstand	%	89,3	DIN EN 14346 2007-03
Anteil Probe > 32mm	%	4	DIN 19528 2009-01, DIN 19529:2015- 12

Eluat gem. DIN 19528 2009-01 mit deionisiertem Wasser

Parameter	Einheit	Messwert	Verfahren
pH- Wert		9,47	DIN EN ISO 10523 (C5) 2012-04
Elektr. Leitfähigkeit	μS/cm	345,00	DIN EN 27888 (C8) 1993-11
Chlorid	mg/l	<5	DIN EN ISO 10304-1 (D20) 2009-07
Sulfat	mg/l	101	DIN EN ISO 10304-1 (D20) 2009-07
DOC	mg/l	3,8	DIN EN 1484 (H3) 2019-04
Summe PAK15	µg/l	< 0,2	DIN 38407-39 (F39) 2011-09
KW-Index (C10-C40)	µg/l	204	DIN EN ISO 9377-2 (H53) 2001-07
Phenole	μg/l	<12	DIN 38407-27 (F27) 2012-10
Antimon	µg/l	<1	DIN EN ISO 17294-2 (E29) 2017-01
Arsen	μg/l	3,07	DIN EN ISO 17294-2 (E29) 2017-01
Blei	μg/l	<1	
Cadmium	µg/l	< 0,1	DIN EN ISO 17294-2 (E29) 2017-01
Chrom, gesamt	µg/l	8,77	DIN EN ISO 17294-2 (E29) 2017-01
Kupfer	µg/l	6,86	DIN EN ISO 17294-2 (E29) 2017-01
Molybdän	µg/l	1,530	DIN EN ISO 17294-2 (E29) 2017-01
Nickel	µg/l	< 1	DIN EN ISO 17294-2 (E29) 2017-01
Vanadium	µg/l	64,1	DIN EN ISO 17294-2 (E29) 2017-01
Zink	μg/l	3,90	DIN EN ISO 17294-2 (E29) 2017-01

Otto Dörner Entsorgung GmbH Frau Beate Weiß Lederstr. 24 22525 Hamburg

Hamburg, den 07.08.2023

Prüfbericht zu Probe-Nr.: P2023004660

Prüfbericht - Nr.:

PB2023006103

Bezeichnung:

6108/2, Misch-RC (RC1), Lieferkörnung 0/32,

Überwachungswerte + PAK 16

Probenahme am:

05.07.2023

Probenahme:

asphalt-labor

Probeneingang im Labor:

10.07.2023

Bearbeitungszeitraum:

10.07.2023 bis 07.08.2023

Die Analysenergebnisse beziehen sich nur auf das vorliegende Probenmaterial.

Der Prüfbericht darf ohne schriftliche Genehmigung des Prüflaboratoriums nicht auszugsweise vervielfältigt werden.

Der Prüfbericht besteht aus 2 Seiten.

Die Prüfberichte werden, wenn nicht anders vereinbart, 5 Jahre in unserem Hause archiviert.

Summenparameter berücksichtigen nur nachgewiesene Substanzen.

Sparkasse Harburg-Buxtehude · IBAN: DE68 2075 0000 0060 0728 08 · BIC: NOLADE21HAM

Prüfbericht Seite 2 von 2 zu Probe-Nr.: P2023004660

Prüfbericht - Nr.: PB2023006103

Feststoffgehalte

Parameter	Einheit	Messwert	Verfahren
Trockenrückstand	%	89,3	DIN EN 14346 2007-03
Anteil Probe > 32mm	%	4	DIN 19528 2009-01, DIN 19529:2015- 12
Arsen	mg/kg TS	3,84	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Blei	mg/kg TS	12,7	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Chrom, gesamt	mg/kg TS	21,1	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Cadmium	mg/kg TS	< 0,1	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Kupfer	mg/kg TS	16,5	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Quecksilber	mg/kg TS	<0,1	DIN EN ISO 12846 (E12) 2012-08 / Aufschluss DIN EN 13657 2003-01
Nickel	mg/kg TS	13,1	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Thallium	mg/kg TS	< 0,4	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
Zink	mg/kg TS	83,8	DIN EN 16171 2017-01 / Aufschluss DIN EN 13657 2003-01
KW-mobiler Anteil (C10-C22)	mg/kg TS	< 50	DIN EN 14039 2005-01
KW-Index (C10-C40)	mg/kg TS	< 100	DIN EN 14039 2005-01
Summe PCB 6	mg/kg TS	< 0,02	DIN EN 16167 2019-06
PCB-118	mg/kg TS	<0,002	DIN EN 16167 2019-06
Summe PCB 7	mg/kg TS	< 0,02	DIN EN 16167 2019-06
Summe PAK16	mg/kg TS	2,06	DIN ISO 18287 2006-05

The state of the s	ri-boit	ששטעטטכנטנט	DONORONGER	75003004657	P2023004658	kumulativ W/F 2,0	kumulativ W/F 2,0
Ergebnis Beschreibung	EINDEIL	P.ZUZ3UU4655	7.2023004030	202000000	VA/E 2 A	Δ	Air
		W/F 0 - 0,3	W/r U,3 - 1	VV/F 1 - 2	+ - 7 I/AA	(n)t.	(o).
Fraktion		1	2	Э	4	1-3	1-3
pH- Wert		9,05	9,27	9,12	9,47	ŧ	ı
Elektr. Leitfähigkeit	uS/cm	2960,00	1033,00	545,00	345,00	947,33	947,33
Chlorid	l/gm	174,00	15,20	5,46	<5	35,70	35,70
Sulfat	mg/l	1040	435	200	101	353,31	353,31
500	mg/l	44,00	11,00	7,90	3,80	12,95	12,95
Summe PAK15	ug/l	0,22	< 0,2	<0,2	< 0,2	0,04	0,15
KW-Index (C10-C40)	ug/l	842,00	599,00	00'899	204,00	515,08	515,08
Phenole	l/an	<12	<12	<12	<12	00'0,	9,01
Phenolindex	mg/l	0,02	<0,01	<0,01	<0,01	00'0	0,01
Antimon	ug/l	<1	<1	<1	<1	00'0	0,75
Arsen	[/an ·	16.60	6,34	4,16	3,07	5,81	5,81
Blai	l/an	<1	<1	<1	<1	00'0	0,75
Cadminm	l/an	< 0.1	< 0,1	< 0,1	< 0,1	00'00	0,08
Chrom gesamt	i/an	197.00	29,90	14,10	8,77	46,16	46,16
Kunfer	ug/l	66,10	18,70	10,50	98'9	19,53	19,53
Molybdän	ug/I	45,33	90′9	2,60	1,53	10,21	10,21
Nickel	l/an	22,60	3,88	1,41	<1	5,34	5,34
Vanadium	ug/l	94,30	114,00	104,00	64,10	78,89	78,89
Zink	l/8n	35,30	12,40	6,87	3,90	11,44	11,44
Eluatvolumen je Fraktion	Ē	467	629	868	1825	2024	2024
Trockenmasse Probe	gy	1,3472					
Summe PAK16	mg/kg	2,06					

nerkung: Leitfähigkeit kumulativ auf Anfrage berechne

